Generalized Bernstein Type Inequalities for the Higher Derivatives of a Complex Polynomial

Barchand Chanam
Associate Professor, National Institute of Technology Manipur, Manipur, India barchand_2004@yahoo.co.in

Abstract:

Let $v(z)$ be a polynomial of degree m having no zero zero in $|z| \leq a, a \geq 1$, then for $1 \leq T \leq a$, Dewan and Bidkham [J. Math. Anal. Appl., vol. 166, pp. 319-324, 1992] proved

$$
\max _{|z|=T}\left|v^{\prime}(z)\right| \leq n \frac{(T+a)^{m-1}}{(1+a)^{m}} \max _{|z|=1}|v(z)| .
$$

The result is best possible and extremal polynomial is $v(z)=(z+a)^{m}$.

In this paper, by involving certain co-efficients of the polynomial $v(z)$, we prove a result concerning the estimate of maximum modulus of higher derivatives of $v(z)$, which not only improves as well as generalizes the above result, but also has interesting consequences as special cases.

1. INTRODUCTION

It was for the first time, Bernstein [9, 10] investigated an upper bound for the maximum modulus of the first derivative of a complex polynomial on the unit circle in terms the maximum modulus of the polynomial on the same circle and proved the following famous result known as Bernstein's inequality that if $v(z)$ is a polynomial of degree m, then $\max _{|z|=1}\left|v^{\prime}(z)\right| \leq m \max _{|z|=1}|v(z)|$.

Inequality (1.1) is best possible and equality occurs for $v(z)=\lambda z^{m}, \lambda \neq 0$, is any complex number.
If we restrict to the class of polynomials having no zero in $|z|<1$, then inequality (1.1) can be sharpened as

$$
\begin{equation*}
\max _{|z|=1}\left|v^{\prime}(z)\right| \leq \frac{m}{2} \max _{|z|=1}|v(z)| . \tag{1.2}
\end{equation*}
$$

The result is sharp and equality holds in (1.2) for $v(z)=\alpha+\beta z^{m}$, where $|\alpha|=|\beta|$.

Inequality (1.2) was conjectured by Erdös and later proved by Lax [7].

Simple proofs of this theorem were later given by de-Bruijn [3], and Aziz and Mohammad [1].

It was asked by Professor R.P. Boas that if $v(z)$ is a polynomial of degree m not vanishing in $|z|<a, a>0$, then how large can

$$
\begin{equation*}
\left\{\max _{|z|=1}\left|v^{\prime}(z)\right| / \max _{|z|=1}|v(z)|\right\} \text { be? } \tag{1.3}
\end{equation*}
$$

A partial answer to this problem was given by Malik [8], who proved

Theorem A. If $v(z)$ is a polynomial of degree m having no zero in the disc $|z|<a, a \geq 1$, then
$\max _{|z|=1}\left|v^{\prime}(z)\right| \leq \frac{m}{1+a} \max _{|z|=1}|v(z)|$.

The result is best possible and equality holds for $v(z)=(z+a)^{m}$.
For the class of polynomials not vanishing in $|z|<a, a \leq 1$, the precise estimate for maximum of $\left|v^{\prime}(z)\right|$ on $|z|=1$, in general, does not seem to be easily obtainable.For quite some time, it was believed that if $v(z) \neq 0$ in $|z|<a, a \leq 1$, then the inequality analogous to (1.4) should be

$$
\begin{equation*}
\max _{|z|=1}|v(z)| \leq \frac{m}{1+a^{m}} \max _{|z|=1}|v(z)| . \tag{1.5}
\end{equation*}
$$

till Professor E.B. Saff gave the example $v(z)=\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)$ to counter this belief.

Dewan and Bidkham [4] generalized Theorem A by considering any circle that lies in a closed circular annulus of radii 1 and a where $a \geq 1$. In fact, they prove

Theorem B. If $v(z)$ is a polynomial of degree m having no zero in $|z|<a, a \geq 1$, then for $1 \leq T \leq a$,

$$
\begin{equation*}
\max _{|z|=T}\left|v^{\prime}(z)\right| \leq m \frac{(T+a)^{m-1}}{(1+a)^{m}} \max _{|z|=1}|v(z)| . \tag{1.6}
\end{equation*}
$$

The result is best possible and extremal polynomial is $v(z)=(z+a)^{m}$.

In this paper, by involving some co-efficients of the polynomial $v(z)$ and also $\min _{|z|=a}|v(z)|$, we obtain a result which is an improvement and a generalization of (1.6) by further extending for the s th derivative of $v(z)$ and maxima are considered on two different circles lying both inside and on any circle. More precisely, we have

Theorem. If $v(z)=\sum_{v=0}^{m} c_{v} z^{v}$ is a polynomial of degree m having no zero in $|z|<a, a>0$, then for $0<t \leq T \leq a$, and $1 \leq s \leq m$,

$$
\begin{aligned}
& \max _{|z|=T}\left|v^{(s)}(z)\right| \leq \frac{m(m-1) \ldots \ldots .(m-s+1)}{T^{s}+\delta_{a, s}} \\
& \times\left[\left(\frac{T+a}{t+a}\right)^{m} \max _{|z|=t}|v(z)|-\left\{\left(\frac{T+a}{t+a}\right)^{m}-1\right\} \min _{|z|=a}|v(z)|\right]
\end{aligned}
$$

where

$$
\delta_{a, s}=\frac{C(m, s)\left|c_{0}\right| a^{s+1}+\left|c_{s}\right| T a^{2 s}}{C(m, s)\left|c_{0}\right| T+\left|c_{s}\right| a^{s+1}} \text { with } C(m, s)=\frac{m!}{s!(m-s)!} .
$$

The result is best possible for $s=1$ and equality in (1.7) holds forv $(z)=(z+a)^{m}$.

Remark 1.1. Putting $t=1$, our theorem gives the following result, which is an improvement of Theorem B.

Corollary 1.1. If $v(z)=\sum_{v=0}^{m} c_{v} z^{v}$ is a polynomial of degree m having no zero in $|z|<a, a \geq 1$, then for $1 \leq T \leq a$, and $1 \leq s \leq m$,

$$
\begin{aligned}
& \max _{|z|=T}\left|v^{(s)}(z)\right| \leq \frac{m(m-1) \ldots \ldots(m-s+1)}{T^{s}+\delta_{a, s}} \\
& \times\left[\left(\frac{T+a}{1+a}\right)^{m} \max _{|z|=t}|v(z)|-\left\{\left(\frac{T+a}{1+a}\right)^{m}-1\right\} \min _{|z|=a}|v(z)|\right]
\end{aligned}
$$

where $\delta_{a, s}$ is as defined in the theorem.

Remark 1.2. Corollary 1.1 provides a generalization of a result due to Aziz and Rather [2].

Remark 1.3. If we assign $T=s=1$ in Corollary 1.1, it reduces to a result of Govil et.al [6].

Corollary 1.2. If $v(z)=\sum_{v=0}^{n} c_{v} z^{v}$ is a polynomial of degree m having no zero in $|z|<a, a \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|v^{\prime}(z)\right| \leq \frac{\left|c_{1}\right| a^{2}+m\left|c_{0}\right|}{\left(1+a^{2}\right) m\left|c_{0}\right|+2\left|c_{1}\right| a^{2}|z|=1} \max _{\mid z=}|v(z)| . \tag{1.9}
\end{equation*}
$$

Remark 1.4. Corollary 1.2 is an improved version of a wellknown inequality proved by Malik [8] under the same set of hypotheses.

Remark 1.5. If we put $s=t=T=a=1$, our theorem gives inequality (1.2), conjectured by Erdös and later proved by Lax [7].

2. LEMMA

The following lemmas are needed for the proof of the theorem.

Lemma 2.1. If $v(z)=\sum_{v=0}^{m} c_{v} z^{v}$ is a polynomial of degreen such that $\mathrm{v}(z) \neq 0$ for $|z|<a, a \geq 1$, then

$$
\begin{equation*}
\mu_{a, s}\left|v^{(s)}(z)\right| \leq\left|u^{(s)}(z)\right| \text { for }|z|=1 \tag{2.1}
\end{equation*}
$$

and

$$
\frac{1}{C(m, s)} \frac{\left|c_{s}\right|}{\left|c_{0}\right|} a^{s} \leq 1
$$

where

$$
\begin{array}{r}
u(z)=z^{m} \overline{v\left(\frac{1}{\bar{z}}\right)}, \\
\mu_{a, s}=\frac{C(m, s)\left|c_{0}\right| a^{s+1}+\left|c_{s}\right| a^{2 s}}{C(m, s)\left|c_{0}\right|+\left|c_{s}\right| a^{s+1}} \text { and }
\end{array}
$$

$C(m, s)$ is as defined in our theorem.
The above result is due to Aziz and Rather [2].
Lemma 2.2. If $v(z)=c_{0}+\sum_{v=\mu}^{m} c_{v} z^{v}, 1 \leq \mu \leq m$, is a polynomial of degree m such that $v(z) \neq 0$ in $|z|<a, a>0$, then for $0<t \leq T \leq a$,
$\max _{|z|=T}|v(z)| \leq A \max _{|z|=t}|v(z)|-(A-1) \min _{|z|=a}|v(z)|$.
where

$$
A=\left(\frac{T^{\mu}+a^{\mu}}{t^{\mu}+a^{\mu}}\right)^{\frac{m}{\mu}}
$$

Equality holds in (2.2) for $v(z)=\left(z^{\mu}+a^{\mu}\right)^{\frac{m}{\mu}}$ where m is a multiple of μ.

This Lemma is due to Dewan et. al [5].

3. PROOF OF THE THEOREM

If $v(z)$ has no zero in $|z|<a, a>0$ and if $0<t \leq T \leq a$, then $V(z)=v(T z)$ has no zero in $|z|<\frac{a}{T}, \frac{a}{T} \geq 1$. Thus, applying Lemma 2.1 to $P(z)$, we get for $1 \leq s \leq n$ and $|z|=1$, $\delta_{a, s}^{\prime}\left|V^{(s)}(z)\right| \leq\left|U^{(s)}(z)\right|$,
where
$\delta_{a, s}^{\prime}=\frac{1}{T^{s}}\left\{\frac{C(m, s)\left|c_{0}\right| a^{s+1}+\left|c_{s}\right| T a^{2 s}}{C(m, s)\left|c_{0}\right| T+\left|c_{s}\right| a^{s+1}}\right\}$,
and
$u(z)=z^{m} \overline{v\left(\frac{1}{\bar{z}}\right)}$.
Now if $f(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then $g(z)=z^{m} \overline{v\left(\frac{1}{\bar{z}}\right)}$ has no zero in $|z|<1$. Hence using inequality (2.1) of Lemma 2.1 with $a=1$, we have for $|z|=1$
$\left|g^{(s)}(z)\right| \leq\left|f^{(s)}(z)\right|$.

Let $M=\max _{|z|=1}|V(z)|$, then for every real or complex number we have for γ with $|\gamma|>1$, it follows by Rouche's theorem that the polynomial $R(z)=V(z)-\gamma M z^{m}$ has all its zeros in $|z|<1$. Suppose
$S(z)=z^{m} \overline{R\left(\frac{1}{\bar{z}}\right)}=z^{m} \overline{V\left(\frac{1}{\bar{z}}\right)}-\bar{\gamma} M=U(z)-\bar{\gamma} M$.

Applying (3.2) to $R(z)$, we get for $1 \leq s \leq n$ and $|z|=1$
$\left|S^{(s)}(z)\right| \leq\left|R^{(s)}(z)\right|$,
which implies for $|z|=1$
$\left|U^{(s)}(z)\right| \leq\left|V^{(s)}(z)-\gamma M m(m-1) \ldots \ldots . .(m-s+1) z^{m-s}\right|$.

Since $V(z)$ is of degree n, it is evident that the polynomial $V^{(s)}(z)$ is of degree $(n-s)$ and repeated application of Bernstein's inequality (1.1) to $V(z)$ yields for $|z|=1$,
$\left|V^{(s)}(z)\right| \leq M m(m-1) \ldots \ldots . .(m-s+1)$.
Further, for suitable choice of the argument of γ in (3.3), we have for $|z|=1$,
$\left|U^{(s)}(z)\right| \leq\left||\gamma| M m(m-1) \ldots \ldots . .(m-s+1)-\left|V^{(s)}(z)\right|\right|$,
which become by making limit as $|\gamma| \rightarrow 1$

$$
\begin{aligned}
& \left|U^{(s)}(z)\right| \leq\left|M m(m-1) \ldots \ldots .(m-s+1)-\left|V^{(s)}(z)\right|\right| \\
& =M m(m-1) \ldots \ldots . .(m-s+1)-\left|V^{(s)}(z)\right| \cdot \quad[U \operatorname{sing} \text { (3.4)] }
\end{aligned}
$$

That is for $|z|=1$,

$$
\begin{equation*}
\left|V^{(s)}(z)\right|+\left|U^{(s)}(z)\right| \leq m(m-1) \ldots \ldots .(m-s+1) M . \tag{3.5}
\end{equation*}
$$

Inequality (3.5) in conjunction with inequality (3.1) gives for $|z|=1$
$\left|V^{(s)}(z)\right| \leq \frac{1}{1+\delta_{a, s}^{\prime}} m(m-1) \ldots \ldots .(m-s+1) \max _{|z|=1}|V(z)|$.

Replacing $V(z)$ by $v(R z)$, we have
$T^{s}\left|v^{(s)}(z)\right| \leq \frac{1}{1+\delta_{a, s}^{\prime}} m(m-1) \ldots \ldots .(m-s+1) \max _{|z|=T}|v(z)|$.
which is equivalent to

$$
\left|v^{(s)}(z)\right| \leq \frac{1}{T^{s}+\delta_{a, s}} m(m-1) \ldots \ldots(m-s+1) \max _{|z|=T}|v(z)|,
$$

where $\delta_{a, s}$ is as defined in the theorem.
When $\mu=1$, Lemma 2.2 becomes for $0<t \leq T \leq a$

$$
\begin{equation*}
\max _{|z|=T}|v(z)| \leq B \max _{|z|=t}|v(z)|-(B-1) \min _{|z|=a}|v(z)| . \tag{3.8}
\end{equation*}
$$

where

$$
B=\left(\frac{T+a}{t+a}\right)^{m} .
$$

Using inequality (3.8) to inequality (3.7), we obtain the required inequality, and this completes the proof of the theorem.

REFERENCES

[1] Aziz A. and Q.G. Mohammad Q.G., " Simple proof of a Theorem of Erdös and Lax, " Proc. Amer Math. Soc., 80, 1980 pp. 119122.
[2] Aziz A. and Rather N.A., "Some Zygmund type L^{p} inequalities for polynomials," J. Math. Anal. Appl., 289, 2004, pp. 14-29.
[3] de-Bruijn N.G., " Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A, 50, 1947, pp. 1265-1272, Indag. Math., 9, pp. 591-598, 1947.
[4] Dewan K.K. and Bidkham M., "Inequalities for a polynomial and its derivative, " J. Math. Anal. Appl., 166, 1992, pp. 319-324.
[5] Dewan K.K., Yadav R.S. and Pukhta M.S., Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 2(2), 1999, pp. 203-205.
[6] Govil N.K., Rahman Q.I. and Schmeisser G., On the derivative of a polynomial, Illinois J. Math., 23, 1979, pp. 319-329.
[7] Lax P.D., "Proof of a conjecture of P. Erdös on the derivative of a polynomial," Bull. Amer. Math. Soc., 50, 1944, pp. 509-513.
[8] Malik M.A., "On the derivative of a polynomial," J. London Math. Soc., 1, 1969, pp. 57-60.
[9] Milovanovic G.V., Mitrinovic D.S. and Rassias Th. M.," Topics in polynomials, Extremal properties, Inequalities, Zeros, "World Scientific Publishing Co., 1994, Singapore.
[10] Schaeffer A. C., "Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions," Bull, Amer. Math. Soc., 47(8), 1941, pp. 565-579.

